
NPOESS COMPETITION SENSITIVE

SOIL MOISTURE
VISIBLE/INFRARED IMAGER/RADIOM
ALGORITHM THEORETICAL BASIS D

Version 3:  May 2000

Narinder Chauhan
Liping Di
Shawn Miller
Philip Ardanuy

Steve Running, Science Team Member
University of Montana

RAYTHEON SYSTEMS COMPANY
Information Technology and Scientific Services
4400 Forbes Boulevard
Lanham, MD 20706

SRBS Document #: Y2387
ETER SUITE
OCUMENT





NPOESS COMPETITION SENSITIVE Soil Moisture

Document #:  Y2387

EDR: SOIL MOISTURE

Doc No: Y2387

Version: 3

Revision: 0

FUNCTION NAME SIGNATURE DATE

Prepared
By

EDR
Developer

N. CHAUHAN

Approved
By

Relevant
IPT Lead

S. MILLER

Approved
By

Chief
Scientist

P. ARDANUY

Released
By

Program
Manager

H. BLOOM





NPOESS COMPETITION SENSITIVE Soil Moisture

 Document #:  Y2387 i

TABLE OF CONTENTS

Page

LIST OF FIGURES........................................................................................................................iii

LIST OF TABLES .......................................................................................................................... v

GLOSSARY OF ACRONYMS .....................................................................................................vi

ABSTRACT ...............................................................................................................................vii

1.0 INTRODUCTION.................................................................................................................. 1

1.1 HISTORICAL PERSPECTIVE .................................................................................... 3

1.2 PURPOSE ..................................................................................................................... 4

1.3 SCOPE........................................................................................................................... 5

1.4 VIIRS DOCUMENTS................................................................................................... 6

1.5 REVISIONS .................................................................................................................. 6

2.0 EXPERIMENT OVERVIEW ................................................................................................ 7

2.1 OBJECTIVES OF SOIL MOISTURE RETRIEVALS................................................. 7

2.2 INSTRUMENT CHARACTERISTICS........................................................................ 7

2.3 RETRIEVAL STRATEGY........................................................................................... 7

3.0 ALGORITHM DESCRIPTION ........................................................................................... 11

3.1 PROCESSING OUTLINE .......................................................................................... 11

3.2 ALGORITHM INPUT ................................................................................................ 13
3.2.1 VIIRS Data ...................................................................................................... 13
3.2.2 Non-VIIRS Data.............................................................................................. 13

3.3 THEORETICAL DESCRIPTION OF SOIL MOISTURE RETRIEVAL.................. 13
3.3.1 Physics of the Problem .................................................................................... 13
3.3.2 Mathematical Description of the Algorithm.................................................... 14

3.3.2.1 Soil Moisture Estimation at CMIS Resolution................................. 14
3.3.2.2 Soil Moisture at VIIRS Resolution .................................................. 17

3.3.3 Archived Algorithm Output ............................................................................ 19

3.4 ERROR ANALYSIS AND SENSITIVITY STUDIES .............................................. 20
3.4.1 Error in Soil Moisture Estimation at the Microwave Resolution.................... 20

3.4.1.1 Microwave Inversion Error ( 1mE ) ....................................................... 21

3.4.1.2  Error due to Data Accuracy and Precision ( 2mE )............................... 22

3.4.2 Error in Soil Moisture Estimation at High Resolution .................................... 23



Soil Moisture  NPOESS COMPETITION SENSITIVE

ii Document #:  Y2387

3.4.3 Calibration Errors............................................................................................ 25
3.4.4 Instrument Noise ............................................................................................. 25
3.4.5 Others .............................................................................................................. 25

3.5 PRACTICAL CONSIDERATIONS........................................................................... 25
3.5.1 Numerical Computation Considerations......................................................... 25
3.5.2 Programming and Procedural Considerations................................................. 25
3.5.3 Configuration of Retrievals............................................................................. 25
3.5.4 Quality Assessment and Diagnostics .............................................................. 25
3.5.5 Exception Handling......................................................................................... 26

3.6 ALGORITHM VALIDATION AND DISCUSSION................................................. 26
3.6.1 Application to SGP-97 Data ........................................................................... 26
3.6.2. Discussion ....................................................................................................... 35
3.6.3 Risks and Risk Reduction Efforts ................................................................... 36

4.0 ASSUMPTIONS AND LIMITATIONS ............................................................................. 39

4.1 ASSUMPTIONS......................................................................................................... 39

4.2 LIMITATIONS........................................................................................................... 39

5.0 REFERENCES .................................................................................................................... 41

APPENDIX ............................................................................................................................... 45



NPOESS COMPETITION SENSITIVE Soil Moisture

Document #:  Y2387 iii

LIST OF FIGURES

Page

Figure 1. An illustration of the importance of soil moisture knowledge from during the
1991 Persian Gulf war. The photo was taken by Associated Press and
appeared in Omaha World Herald on June 23, 1991. ................................................ 2

Figure 2. Schematic flow diagram for soil moisture estimation.............................................. 12

Figure 3. Schematic representation of the partitioning of microwave radiation from
vegetated terrain in terms of the brightness temperature.......................................... 15

Figure 4. Universal Triangle – Schematic relationship between soil moisture,
temperature and NDVI ............................................................................................. 19

Figure 5. Microwave soil moisture inversion results for four different land  surfaces.
Dual polarization is used. ......................................................................................... 22

Figure 6. Location of three sites for the in situ soil moisture  measurements at the SGP-
97 experiment. .......................................................................................................... 27

Figure 7. An example of spatial variability in 0-5 cm soil moisture in a particular field
at Little Washita. The variability appears to be consistent for all the four days
considered in the present study................................................................................. 28

Figure 8. (a) An example of temporal and spatial variability in 0-5 cm soil moisture
measured at the SGP-97 area. Point measurements from each location such as
LW are averaged from the data collected from many fields in LW. LW and
CF are located at south and north edge of the SGP-97 experimental area.  (b)
Retrieved surface soil moisture averaged over three locations for June 29-30,
July 1-2, 1999.  The averaging is done in a 5km x 5km area for a particular
location. Note that pixels averaged in (a) and (b) are not identical.......................... 29

Figure 9. High resolution soil moisture plot for the SGP-97 region for 4 days.  Soil
moisture range varies from 5-20 percent.................................................................. 31

Figure 10. A plot of microwave (low-resolution) of soil moisture for the SGP-97 area.
One-to-one correspondence between Figs. 9 and 10 is observed............................. 32

Figure 11. Soil moisture map of the SGP-97 area at 1 km resolution.  Decreasing trend in
soil moisture from June 29 to July 2 is broadly consistent with data....................... 33

Figure 12. Soil moisture map of the SGP-97 area at 25 km resolution. .................................... 34

Figure A1. Schematic representation of the emission model for vegetated  terrain based
on Peake's approach.................................................................................................. 45



Soil Moisture  NPOESS COMPETITION SENSITIVE

iv Document #:  Y2387

Figure A2. Forward model for smooth and rough (s=3 cm l=10cm)  surface without
vegetation cover. ...................................................................................................... 47

Figure A3. Microwave estimates of soil moisture from bare (rough and flat) surfaces
using single polarization and dual-polarization inversion techniques. .................... 49

Figure A4. Illustration of robustness of the soil moisture inversion against noisy data. ........... 49



NPOESS COMPETITION SENSITIVE Soil Moisture

Document #:  Y2387 v

LIST OF TABLES

Page

Table 1. VIIRS soil moisture EDR requirements [V-2]. .......................................................... 4

Table 2. VIIRS spectral bands.................................................................................................. 8

Table 3. Soybean canopy parameters ..................................................................................... 21

Table 4. Error budget for the soil moisture estimation algorithm  (%) .................................. 24



Soil Moisture  NPOESS COMPETITION SENSITIVE

vi Document #:  Y2387

GLOSSARY OF ACRONYMS

A Albedo

AMSER Advanced Microwave Scanning Radiometer

API Antecedent Precipitation Index

AVHRR Advanced Very High Resolution Radiometer

CMIS Conical-Scanning Microwave Imager/Sounder

CrIS Cross-track Infrared Sounder

DMSP Defense Meterological Satellite Program

EDR Environmental Data Record

EOS Earth Observing System

ESMR Electronically Scanned Microwave Radiometer

IFOV Instantaneous Field of View

IPO Integrated Program Office

IPT Integrated Product Team

IR Infrared

LAI Leaf Area Index

LST Land Surface Temperature

MODIS Moderate Resolution Imaging Spectroradiometer

MPDI Microwave Polarization Difference Index

NDVI Normalized Difference Vegetation Index

NEDT Noise Equivalent Temperature Differential

NOAA National Oceanic and Atmospheric Administration

NPOESS National Polar-orbiting Environmental Satellite System

POES Polar Operational Environmental Satellite

RMS Root Mean Square

SRD Sensor Requirement Document

SVAT Soil Vegetation Atmosphere Transfer

SMMR Scanning Multichannel Microwave Radiometer

SMM/I Special Sensor Microwave/Imager

SGP-97 Southern Great Plain – 97

USDA U.S. Department of Agriculture

VIIRS Visible/Infrared Imager/Radiometer Suite



NPOESS COMPETITION SENSITIVE Soil Moisture

Document #:  Y2387 vii

ABSTRACT

An approach is evaluated for the estimation of soil moisture at high resolution using satellite
microwave and optical/infrared (IR) data. This approach is suitable for data that will be acquired
by the Visible/Infrared Imager/Radiometer Sensor Suite (VIIRS) and a Conical Scanning
Microwave Imager/Sounder (CMIS), planned for launch in 2007-2010 time frame under the
National Polar-orbiting Operational Environmental Satellite System (NPOESS). The estimation
procedure for soil moisture involves two steps. In the first step, a passive microwave remote
sensing technique is employed to estimate soil moisture at low resolution. This involves
inversion of dual-polarized microwave brightness temperature using a simple radiative transfer
model. In the second step, the microwave-derived low-resolution soil moisture is linked to the
scene optical/IR parameters, such as Normalized Difference Vegetation Index (NDVI), surface
albedo, and Land Surface Temperature (LST). The linking of the microwave-derived soil
moisture to NDVI, surface albedo and LST is based on the “Universal Triangle” approach of
relating land surface parameters. The three optical/IR parameters are available at high-resolution
and are aggregated to the microwave resolution for the purpose of building the linkage model.
The linkage model, in conjunction with high-resolution NDVI, surface albedo, and LST, is then
used to disaggregate microwave soil moisture into high-resolution soil moisture.

The technique is applied to data from the Special Sensor Microwave Imager (SSM/I) and
Advanced Very High Resolution Radiometer (AVHRR), which were acquired for the duration of
the Southern Great Plains (SGP-97) experiment conducted in Oklahoma in June-July 1997.
Predicted soil moisture results at higher resolution agree with that of lower resolution results in
both magnitude and trend. The spatial patterns and temporal trends in the predicted soil moisture
show a reasonable agreement with the in situ measurements. An error budget analysis of the soil
moisture estimation procedure gives the root mean square (RMS) error less than 5 percent for a
typical bare field. The potential of this technique for obtaining an operational, high-resolution,
global soil moisture mapping is briefly discussed.
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1.0 INTRODUCTION

As a part of its Integrated Program Office (IPO) program, NPOESS will provide an enduring
capability to measure, on a global basis, atmospheric, land, and ocean environmental parameters.
The system will provide timely and accurate weather and environmental data to weather
forecasters, military commanders, civilian leaders, and the scientific community. NPOESS
converges the National Oceanic and Atmospheric Administration's (NOAA) Polar Operational
Environmental Satellites (POES) and the Defense Department's Defense Meteorological Satellite
Program (DMSP) into a single system. NPOESS will operate in near circular, sun-synchronous
orbit and is scheduled to fly in the 2007-2010 time frame. A host of satellites with sensors
operating in different frequency regions of the electromagnetic spectrum will have equatorial
crossings at 0530, 0930, and 1330 local time. The Visible/Infrared Imager Radiometer Suite
(VIIRS) and Conical-Scanning Microwave Imager/Sounder (CMIS) will form an important part
of NPOESS and will share the same platform. The VIIRS and the CMIS will be successors in
technology to the Advanced Very High Resolution Radiometer (AVHRR) and the Special Sensor
Microwave/Imager (SSM/I), respectively. There are approximately five dozen parameters to be
retrieved from the remote sensing data collected by NPOESS and among them six are considered
to be  “key” parameters (NPOESS, 1999). The “key” parameters are particularly important to
NPOESS mission, and soil moisture is one of the ”key” parameters.  In this paper, we describe a
synergistic optical/IR and microwave approach that could be used by NPOESS for estimating
soil moisture at kilometer resolution.

Recent studies have shown the effects of soil moisture on the feedbacks between land-surface
and atmospheric processes that lead to climate irregularities (Brubaker and Entekhabi, 1996;
Delworth and Manabe, 1989). Simulations have shown that improved characterizations of
surface soil moisture and other land surface parameters in numerical weather prediction models
can lead to forecast improvement (Beljaars et al., 1996). Soil moisture is also an important
component of the various processes of the terrestrial ecosystem. It provides a link between the
terrestrial surface and the atmosphere through its effects on surface energy and soil moisture
fluxes (Sellers et al., 1986). Thus, the ability to determine the spatial and temporal distribution of
soil moisture would be of significant help in understanding the Earth as an integrated system.
Timely information of soil moisture is also used by the military in the efficient planning of their
infantry and vehicular traffic in remote areas (Figure 1).  NPOESS will provide such a capability
on an operational and continuous basis.

Currently, soil moisture product is not available globally. None of the operational missions
produce this product. A few surrogates of soil moisture are available—such as soil wetness,

flood index, crop index, Antecedent Precipitation Index (API), and others. These surrogates are
insufficient substitutes for soil moisture estimates and offer only qualitative information about

the soil moisture. Both microwave and optical/IR remote sensing techniques are capable of
sensing soil moisture, but the implementation of these sensing techniques from space platform
for global soil moisture estimation is lacking. Microwave remote sensing has the potential to

provide a direct measure of soil moisture. It also has the advantage of all-weather observations
and penetration of vegetation canopy for the soil moisture sensing.  However, there are many
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Figure 1. An illustration of the importance of soil moisture knowledge from during the
1991 Persian Gulf war. The photo was taken by Associated Press and appeared in Omaha
World Herald on June 23, 1991.

reasons why microwave techniques have not been applied for the global estimation of soil
moisture. First, the resolution of passive microwave sensors from space is poor; second, the
available wavelengths from satellites do not provide adequate soil moisture sensitivity for all
vegetation covers; third, the a priori information that is required in most of the existing soil
moisture estimation algorithm cannot be obtained globally. For over a decade , efforts have been
made to use longer wavelengths (e.g., L-band) since they provide adequate sensitivity to soil
moisture for most of the vegetation cover.  However, long wavelengths require large antennas in
orbit and are an engineering challenge and the solutions are expensive.  The problem scales
inversely with frequency and consequently an imaging radiometer at L-band has not been flown
in space.  In fact, the resolution available for passive microwave remote sensing from space has
improved very little from its beginnings with the launch of the Electronically Scanned
Microwave Radiometer (ESMR) in 1972. Consequently, despite the success of microwave
remote sensing of soil moisture in controlled environments, very little has been done to extend
soil moisture remote sensing to global scale. Presently, the microwave sensor technology is not
able to provide high-resolution data. Additionally, the microwave algorithms that employ solely
microwave data are not sufficiently robust to estimate soil moisture without a priori information.
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1.1 HISTORICAL PERSPECTIVE

A number of techniques that span the whole electromagnetic spectrum have been used to sense
soil moisture. However, techniques in the optical/IR and microwave frequency regimes have
attracted more attention. Optical/IR sensors provide good spatial resolution and efforts were
made in the seventies to use them for soil moisture estimation (Idso et al., 1975; Idso et al.,
1976; Price, 1977). Controlled experiments show that the optical/IR approach has the potential to
sense soil moisture, but the implementation (particularly from space) has not yet been achieved .
Fresh attempts such as those by Cracknell and Xue (1996) are underway for the determination of
thermal inertia from space. The returns from optical/IR sensors are equally sensitive to the soil
types and it is difficult to decouple the two signatures. In addition, the soil moisture estimates
derived from optical/IR sensors require surface micrometeorological and atmospheric
information that is not routinely available. These are undoubtedly among the reasons that a soil
moisture product has not been slated for future optical/IR missions such as Moderate Resolution
Imaging Spectroradiometer (MODIS).

Passive microwave remote sensing has been used widely to provide a quantitative, direct
estimate of soil moisture (Njoku and Li, 1999; Jackson et al., 1982; Engman, 1991). The soil
moisture maps obtained in Southern Great Plains experiment (SGP-97), Washita-92, Moonsoon-
90 and First ISLSCP Field Experiment (FIFE) were all provided by the passive sensors operating
at L-band. In most cases, a simple radiative transfer model is inverted to obtain Fresnel
reflectivity. A priori information of vegetation optical depth and RMS height, is used to estimate
soil moisture (Jackson and LeVine, 1996). Given the spatial resolution and frequency, the current
generation of spaceborne microwave radiometers is not optimal for land remote sensing. SSM/I
launched in 1987 has the lowest frequency of 19.4 GHz and a spatial resolution of ~56 km. The
Scanning Multichannel Microwave Radiometer (SMMR) launched on the Nimbus-7 satellite in
1978, had a spatial resolution of ~150 km at its lowest frequency of 6.6 GHz. Lower frequencies
such as L-band are preferred for soil moisture since they provide adequate sensitivity to soil
moisture for most of the vegetation cover. However, because of practical problems of supporting
a large, low-frequency antenna in space, the prospect of having a spaceborne low-frequency
microwave sensor remains remote.

Attempts have been made to use microwave satellite data for the soil moisture estimation. Van
de Griend and Owe (1993) and Owe et al. (1992) have written a series of papers on the
characterization of soil moisture and vegetation properties from SMMR data over Southern
Africa. They also presented empirical relationships between vegetation optical depth and optical
parameters such as Normalized Difference Vegetation Index (NDVI). Such relationships have
not been confirmed independently. Jackson (1997) used SSM/I data at 19.4 GHz together with a
priori values of single scattering albedo and optical depth, to estimate soil moisture for a grass-
dominated subhumid area near Oklahoma. He concluded that his approach could not be used for
soil moisture estimation from other vegetation canopies. In a recent paper, Njoku and Li (1999)
have demonstrated an estimation approach that could be used to derive soil moisture from
Advanced Microwave Scanning Radiometer (AMSR) scheduled to fly on Earth Observing
System (EOS) PM-1 platform in 2000. The lowest frequency on AMSER will be 6.9 GHz and
the footprint size of 43 km x 75 km. The microwave equivalent of thermal inertia, known as
radiobrightness thermal inertia, has also been used to estimate soil moisture from satellite
microwave data for the controlled experiments (England et al., 1992).
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1.2 PURPOSE

This document summarizes the theoretical basis, development process, and functional flow of the
Visible/Infrared Imager/Radiometer Suite (VIIRS) soil moisture Environmental Data Record
(EDR) estimation process. The document is evolutionary in nature and will undergo periodic
changes to fulfill threshold requirements and some objectives given in the VIIRS Sensor
Requirement Documents (SRD) [V-1] and [V-2].

In our original proposal, soil moisture was identified as a high-risk EDR . Employing an
approach outlined in this document, the risk has been reduced considerably, and partial
objectives have been achieved. This document identifies sources of input data (both VIIRS and
non-VIIRS) that are required for the soil moisture retrieval. It provides theory and mathematical
background underlying the use of this information in the retrieval process. The implementation,
assumptions, and limitations of the adopted approach are also discussed in this document. Some
results and validation of the algorithm are also discussed. The main purpose is to provide a
sound, repeatable, step-by-step approach for estimating soil moisture within the limits defined in
the VIIRS Sensor Requirement Document (SRD). The VIIRS SRD [V-1] requirements are
shown in Table 1.

Table 1. VIIRS soil moisture EDR requirements [V-2].

Para. No. Parameter Threshold Objective
a. Horizontal Cell Size

1. Clear, at nadir (TBR) 1 km (TBD)
2. Clear, worst case (TBR) 4 km 2 km
3. Cloudy, at nadir 40 km 2 km

V40.2.6-1
V40.2.6-2

4. Cloudy, worst case 50 km (TBD)
V40.2.6-3 b. Horizontal Reporting Interval (TBD) (TBD)
V40.2.6-4 c. Vertical Cell Size 0.1 cm 5 cm
V40.2.6-5 d. Vertical Reporting Interval N/A 5 cm
V40.2.6-6 e. Horizontal Coverage (TBR) Land Land
V40.2.6-7 f. Vertical Coverage Surface to –0.1cm

(skin layer)
Surface to –80cm

V40.2.6-8 g. Measurement Range 0-100 cm/m (TBR) 0-100 cm/m
h. Measurement Uncertainty

1. Clear, bare soil in regions with known soil
types (smaller horizontal cell size)

10 cm/m (TBR) Surface: 1cm/m
V40.2.6-9

2. Cloudy, bare soil in regions with known soil
types (greater horizontal cell size)

20 cm/m (TBR) Surface: 1cm/m

V40.2.6-10 i. Mapping Uncertainty 3 km 1 km
j. Maximum Local Average Revisit Time 8 hrs 3 hrs
k. Maximum Local Refresh (TBD) (TBD)

V40.2.6-11 l. Minimum Swath Width 3000 km (TBR) (TBR)
  Units: cm/meter (cm of water per meter of soil depth)
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1.3 SCOPE

To achieve accuracy and high spatial resolution, it seems natural to have a technique that
combines the strengths of microwave as well as optical/IR remote sensing approaches for the soil
moisture estimation. This document describes a two-step approach to obtain operational,
reasonably accurate, high-resolution soil moisture by linking microwave-derived soil moisture
estimates with optical/IR parameters.  First, the soil moisture at low resolution is retrieved from
microwave data. The microwave estimates are limited to weakly vegetated terrain to ensure the
accuracy of the retrieved soil moisture. We use both the horizontal and vertical polarizations at
the lowest available radiometer frequency and invert the ratio of horizontal to vertical Fresnel
reflectivity to obtain soil moisture. It is widely believed that the proposed design of CMIS will
have a C-band along with other high frequency channels. The technique is suitable for satellite
remote sensing and does not require a priori information. Secondly, to increase resolution,
relationships are derived between microwave-derived soil moisture, NDVI, surface albedo, and
Land Surface Temperature (LST). The latter three parameters are obtained from satellite data
acquired by a high-resolution optical/IR sensor and aggregated to the microwave resolution for
the purpose of building relationships. The model is then applied backwards to high-resolution
NDVI, surface albedo, and LST to obtain high-resolution soil moisture. The final soil moisture
estimates are greatly improved in terms of spatial resolution and accuracy in comparison to the
soil wetness product currently produced by NOAA. The enhancement of spatial resolution of soil
moisture from ~50 km to ~1 km, is a highly relevant research development in this area.

An error and sensitivity analysis has been performed on the estimation procedure. For the
microwave part, error analysis is carried out using an emission model that is robust and has been
validated for a variety of canopy covers. For the high-resolution estimation, error analysis is
performed using SSM/I and AVHRR data. Finally, the soil moisture estimation technique is
applied to Southern Great Plain – 97 (SGP-97) data that was collected in Oklahoma.  In situ soil
moisture  (0-5 cm deep) collected during the SGP-97 experiment is compared against the
predictions. The limitation of point measurements for validation of soil moisture maps is also
discussed.

This document covers the algorithm theoretical basis for the soil moisture EDR that is to be
routinely retrieved. It discusses the unique capability of the National Polar-orbiting
Environmental Satellite System (NPOESS) sensors (VIIRS, and the Conical-Scanning
Microwave Imager Sounder [CMIS]) to estimate soil moisture on regional and global scales. The
threshold requirement is to estimate soil moisture from bare soil and the objective requirement is
to estimate soil moisture from any surface including moisture profiles with depth. Section 3
discusses the rationale for the development of the soil moisture estimation algorithm and
includes mathematical descriptions, sensitivity studies, and practical considerations for the
implementation of the retrieval algorithm. The results and the validation of the algorithm
presented here are focused toward achieving the threshold requirement.

The Raytheon soil moisture Integrated Product Team (IPT) has developed a new algorithm to
produce the global soil moisture EDR. The microwave estimation of soil moisture is much
improved from the existing (soil wetness) product produced for operational purposes. The
extension of microwave resolution from 50 km to 1 km is a new research development. This new
technique/algorithm is being written in the form of a research paper and will be submitted for
publication (Chauhan et al., 1999).
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1.4 VIIRS DOCUMENTS

Reference to VIIRS documents is indicated by a number in brackets, e.g., [V-1].

[V-1] NPOESS IPO, 1997, Visible/Infrared Imager/Radiometer Suite (VIIRS), Sensor
Requirement Document (SRD), Prepared by Associate Directorate for Acquisition,
NPOESS Integrated Program Office.

[V-2] NPOESS IPO, 1998, Visible/Infrared Imager/Radiometer Suite (VIIRS), Sensor
Requirement Document (SRD), Prepared by Associate Directorate for Acquisition,
Revision 1, NPOESS Integrated Program Office.

[V-3] NPOESS IPO, 1999, Technical Requirement Document (TRD), Appendix D. Prepared
by Associate Directorate for Acquisition, NPOESS Integrated Program Office.

[C-1] NPOESS IPO, 1997, Conical-scanning Microwave Imager Sounder (CMIS), Sensor
Requirement Document (SRD), Prepared by Associate Directorate for Acquisition,
NPOESS Integrated Program Office.

1.5 REVISIONS

The original version of the document was dated July 30, 1998. Revision 1 is dated September
1998. Revision 2 was dated June 1999.  Revision 3 is dated May 2000.
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2.0 EXPERIMENT OVERVIEW

2.1 OBJECTIVES OF SOIL MOISTURE RETRIEVALS

The NPOESS VIIRS SRD defines threshold requirements as well as objectives of the soil
moisture retrieval. Under clear conditions, the threshold requirement is to measure soil moisture
only within a thin layer at the surface (0.1 cm thick) and only for bare soil in the region of known
soil types. The objective is to measure a moisture profile up to a depth of 80 cm below the
surface for any soil, whether bare or not, and whether or not the soil type is known. Soil moisture
EDR is a 1 km global daily product under clear sky conditions with measurement uncertainty not
to exceed 10 percent. For estimation under cloudy conditions, the horizontal cell size is 40 km
and uncertainty not to exceed 20 percent. The uncertainty in the objectives should not exceed 1
percent in the surface soil moisture estimates and 5 percent in profile estimation. The threshold
requirement for minimum swath width is 3,000 km. The details are given in Table 1.

2.2 INSTRUMENT CHARACTERISTICS

The VIIRS sensor will provide global coverage with a 16-day repeat cycle at the equator and a 3-
day repeat cycle at the poles. It will fly in an 833 km descending orbit with an equatorial
crossing time of 9:30 AM. The VIIRS sensor is a cross-track sensor with the spectral channels
listed in Table 2 arranged on three focal planes. The minimum swath width is 1700 km. The
nadir pixel size is approximately 375 m for the imagery resolution bands (5i, 6i, 8i, 10iw, and
12iw) and 750 m for the moderate resolution bands.

2.3 RETRIEVAL STRATEGY

The optical sensors are reasonably good in sensing soil moisture but are also equally sensitive to
soil types. It is difficult to decouple the two signatures. This perhaps is one of the reasons that a
soil moisture product has not been attempted from the Moderate Resolution Imaging
Spectroradiometer (MODIS). However, VIIRS has an advantage over MODIS due to the
inclusion of a passive microwave sensor CMIS on its platform. Our retrieval strategy takes
advantage of the presence of these two sensors on the same platform. The estimation algorithm
uses synergistically collected microwave-optical data for the estimating soil moisture. The
microwave sensors are relatively insensitive to soil types but can give quantitative estimates of
soil moisture when used in conjunction with optical/thermal sensors. This document discusses
the combined use of optical and microwave data to estimate soil moisture. Because microwave
data will be available at much lower resolution than optical data, the traditional soil moisture
estimation algorithm using synergistic microwave and thermal data will be extended to generate
a high resolution, 1 km soil moisture EDR.
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Table 2. VIIRS spectral bands.
VIIRS BAND Center

(µµµµm)
Width
(µµµµm)

Nadir pixel
size (m)

Chlor2 0.412 0.020 750
2 0.445 0.018 750

Chlor8 0.488 0.020 750
4 0.555 0.020 750
5i 0.645 0.050 375

OC2 0.672 0.020 750
OC3 0.751 0.015 750

6i 0.865 0.039 375
6r 0.865 0.039 750

Cloud1 1.240 0.020 750
7 1.378 0.015 750
8i 1.610 0.060 375
8r 1.610 0.060 750
9 2.250 0.050 750

10r 3.700 0.180 750
10iw 3.740 0.380 375
SST2 4.050 0.155 750
SST4 8.550 0.300 750

11 10.783 1.000 750
12iw 11.450 1.900 375
12r 12.013 0.950 750

DNB 0.700 0.400 750

Implementation of the combined optical-microwave algorithm involves the following steps:

•  Estimate soil moisture at CMIS resolution using CMIS-derived microwave brightness
temperature, VIIRS-derived aggregated Land Surface Temperature (LST), and Normalized
Difference Vegetation Index (NDVI).

•  Because soil moisture is related to NDVI, LST, and surface albedo (A), develop regression
relations between microwave-derived soil moisture and aggregated VIIRS-derived NDVI,
LST, and A.

•  Use the regression coefficients, VIIRS-derived non-aggregated km-scale NDVI, LST, and A
to obtain soil moisture EDR at 1 km resolution.
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A parallel effort is also under way by the CMIS group/contractor to estimate soil moisture EDR
at CMIS resolution. Most of the requirements, such as measurement uncertainty and vertical
coverage, are the same for VIIRS and CMIS for the soil moisture EDR even though horizontal
cell sizes are different for the two sensors. The horizontal cell size and minimum swath width for
VIIRS are 1 km and 3,000 km, while for CMIS these are 40 km and 1700 km, respectively. At
the present stage of the VIIRS contract, we are insulated from CMIS activities; therefore, we
decided to develop our own state-of-the-art microwave algorithm for soil moisture estimation
from CMIS data. This includes a forward model to simulate CMIS data (microwave brightness
temperature). This will allow us to meet the measurement uncertainty requirement given in [V-2].

For cloudy conditions, soil moisture threshold requirements for resolution and measurement
uncertainty are the same for VIIRS and CMIS. Therefore, we have decided not to duplicate the
CMIS effort.
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3.0 ALGORITHM DESCRIPTION

3.1 PROCESSING OUTLINE

The VIIRS soil moisture retrieval approach involves inversion of CMIS data using a simple
radiative transfer model to obtain microwave surface reflectivity. The microwave surface
reflectivity is converted to obtain soil moisture. At this stage the soil moisture product is at
CMIS resolution. The resolution of this product is improved by regressing soil moisture against
NDVI, albedo, and LST, which are available at  roughly 1 km resolution (Chauhan et al., 1999).
Figure 2 depicts the processing concept for soil moisture retrieval over bare and weakly
vegetated surfaces.

The retrieval process is assisted by the availability of two VIIRS-derived EDRs. The first EDR,
NDVI, is used to distinguish between vegetated and nonvegetated areas. It is also used to
quantify vegetation, so as to limit the application of the soil moisture estimation algorithm to a
certain level of vegetation where the microwave soil moisture estimation algorithm will be valid.
Note that the threshold requirement is to estimate soil moisture only for bare soil. The second
EDR, LST, is used to scale microwave brightness temperature to obtain the microwave
emissivity of the soil surface. Aggregated NDVI, LST, and surface albedo are used in the
microwave inversion process, while for VIIRS soil moisture EDR estimation, nonaggregated (1
km) NDVI, LST, and surface albedo are used.

Soil moisture estimation under vegetation is still a topic of research, and there is no single
acceptable algorithm to predict soil moisture from vegetated areas. Therefore, the present
algorithm will only be applied to weakly vegetated areas, such as grassland and short agricultural
crops. NDVI will be used to limit the vegetation pixels.

As is clear from the outline given in Figure 2, the core of the process in the current soil moisture
determination involves a synergistic analysis of microwave-optical/infrared data. The algorithm
combines the traditional accuracy of microwave sensors for soil moisture sensing with the high-
resolution capability of the optical/infrared sensors to determine a soil moisture estimate at 1 km
resolution. This ATBD describes the second version of this algorithm, and will require more
fine-tuning as we move along.



Soil Moisture  NPOESS COMPETITION SENSITIVE

12 Document #:  Y2387

Figure 2. Schematic flow diagram for soil moisture estimation.
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3.2 ALGORITHM INPUT

3.2.1 VIIRS Data

VIIRS-produced EDRs (i.e., NDVI, LST, and surface albedo) are required in the soil moisture
estimation algorithm. NDVI is used to separate vegetated and nonvegetated areas. It is also used
to quantify the vegetation amount.

3.2.2 Non-VIIRS Data

The algorithm requires synergistic microwave brightness temperatures from CMIS at both
horizontal and vertical polarization [C-1] at the lowest CMIS frequency. In addition, a data bank
of rivers, lakes, streams, other water bodies; an ocean/land mask; and a cloud mask are also
needed.

3.3 THEORETICAL DESCRIPTION OF SOIL MOISTURE RETRIEVAL

3.3.1 Physics of the Problem

The soil moisture estimation algorithm consists of two steps. Step One involves soil moisture
estimation at CMIS resolution using CMIS microwave brightness temperature and aggregated
LST. Step Two deals with improving the resolution of soil moisture (estimated in the first step)
by incorporating nonaggregated km-scale LST, NDVI, and albedo EDRs. This produces a soil
moisture EDR product at 1 km scale resolution. Both steps are based on well known physics.

The theoretical basis for measuring soil moisture in Step One is based on the large contrast
between the dielectric properties of water and dry soil. The large dielectric constant for water is
the result of the water molecule alignment of the dielectric dipole in response to the applied
electromagnetic field. For example, at C-band the real part of the dielectric constant of water is
about 80 compared to that of dry soil, which is on the order of 3-5. Thus, as the soil moisture
increases, the dielectric constant of the soil increases, and this change is detected by microwave
sensors. It is interesting to note that the dielectric constant has a weak dependence on soil types.
As a result, microwave remote sensing techniques for soil moisture estimation do not require
precise knowledge of soil types.

Soil moisture estimation at the microwave resolution employs microwave  brightness
temperature and aggregated LST.  The retrieval is performed using a radiative transfer model.
Because most of the remote sensing problems are ill-posed, a straightforward inversion of
radiative transfer models is complicated. The retrieval model is a simplified version of the
rigorous model described  by Tsang et al. (1985), but it contains most of the essential elements
that are required for soil moisture estimation. The microwave algorithm is limited to weakly
vegetated areas. In the present paper, the algorithm is applied to pixels with NDVI ≤ 0.4. This
condition, however, depends on the channel frequency of the microwave data. The accuracy of
the microwave algorithm for the soil moisture estimation in vegetated areas degrades with
increased channel frequency.

The second step involves developing a relationship between the microwave-derived soil moisture
and NDVI, temperature, and albedo. It is well known that the surface radiant temperature of bare
soil illuminated by sunlight is highly correlated with soil wetness (Idso et al., 1975). The spatial
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variations of the radiant temperature are highly dependent on the fraction of bare soil viewed by
the radiometer and surface soil water contents. Vegetation, however, complicates the problem. A
rigorous way to understand these relationships is through the modeling of the Soil Vegetation
Atmosphere Transfer (SVAT) of energy using an energy budget approach. However, Carlson et
al. (1994) and Gillies et al. (1997) were able to generate a simple regression relation among the
three parameters (NDVI, soil moisture, and soil temperature) by careful analyses of available
data. The results were later confirmed by the University of Pennsylvania SVAT model. A unique
relationship between the surface soil moisture availability and the radiant temperature does not
exist in the presence of vegetation cover, but relative variations in   NDVI and temperature show
a fairly stable relationship to soil moisture availability over a wide range of climatic conditions
and land surface types (Carlson et al., 1994). Therefore, the second step of the soil moisture
estimation process is to determine relationship between microwave-derived soil moisture, NDVI,
temperature, and albedo through regression - a practice established by Carlson et al. (1994).
These regression relations, in conjunction with high resolution NDVI, LST, and albedo, are then
used to obtain soil moisture at high resolution.

Figure 2 illustrates  the soil moisture estimation algorithm.  The details of these steps are
described in the following sections.

3.3.2 Mathematical Description of the Algorithm

The algorithm to retrieve soil moisture from microwave data is described first. Instead of
presenting the complicated details of the transport theory, a simplified version of the retrieval
model that is based on radiative transfer theory is described in the following section. The next
section focuses on the regression model used in the inversion process and skips the complicated
derivation of the model from SVAT theory.

3.3.2.1 Soil Moisture Estimation at CMIS Resolution

A layer of vegetation over soil attenuates emission from the soil and adds to the radiative flux
with its own emission. A simple radiative transfer model describing the brightness temperature
of a weakly scattering vegetation layer above a semi-infinite medium was first developed by
Basharinov and Shutko (1975) and is described in Ulaby et al. (1982). A schematic
representation of the partitioning of microwave radiation from a vegetated surface in terms of the
brightness temperature TB is shown in Figure 3. Mathematically, TB can be written as:

ττττ ωω −−−− −−+−−+−= eeTReTeRTT vsvssB )1()1()1()1()1( (1)

where Ts and Tv are soil and vegetation temperatures respectively, Rs is the  reflectivity of the soil
surface, τ  is the vegetation optical depth, and ω is the single-scattering albedo of vegetation. In
the above equation )1( sR− is defined as emissivity and τ−e is called canopy attenuation. The
polarization dependence in Equation 1 has been suppressed for the sake of simplicity.

The three terms in Equation 1 represent dominant contribution to microwave emission from a
typical land surface. The first term is the radiation emitted by the soil surface multiplied by the
canopy transmissivity.  The second term is the upward radiation from vegetation, and the last
term is the downward radiation from vegetation reflected at the soil surface and attenuated by
vegetation. As can be seen in Equation 1, the soil moisture effects on emission are from the first
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and third terms in the form of surface reflectivity Rs.

Equation 1 assumes that the atmospheric and sky contributions to TB are small and are ignored
here. Microwave brightness temperatures from space are modified by atmosphere. Short-term
comparisons of TB are generally valid at low frequencies.  Over longer periods (seasonal or
yearly) however, atmosphere must be taken into account. As noted by Choudhury (1993), the
magnitude of the effect of atmosphere at mid-latitudes at 19 GHz is of the order of
+3K. CMIS frequency used in the present soil moisture retrieval process will probably be lower
than 19 GHz. As a result, atmospheric contribution to brightness temperature will be small and is
not accounted for here.
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Figure 3. Schematic representation of the partitioning of microwave radiation from
vegetated terrain in terms of the brightness temperature.

or most non-forest vegetation, Ts ~ Tv=T. Equation 1 then reduces to:

{ })1)(1)(1()1( τττ ω −−− −−++−= eeReRTT ssB (2)

f the vegetation is considered as a purely absorbing medium such that the single-scattering
lbedo is negligibly small, then Equation 2 reduces to:

[ ]τ21 −−= eRTT sB (3)

vegetation

ground

τ−eeT ss )1()1( τω −−− eTv
ττω −−−− eeTR v )1()1(
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The reflectivity sR  depends on the soil dielectric constant and is related to soil moisture
(Hallikainen et al., 1985). If the ground surface is rough, the reflectivity is modified by the
surface roughness and is given by

io sk
gs eRR θ222 cos42 −= (4)

Here, s is the RMS height of the rough surface, ko is the free space wave number, iθ is the view

angle of the radiometer, and 
2

gR  is the Fresnel reflectivity of the soil.

To obtain soil moisture, Equation 3 is inverted and surface reflectivity is determined first. Most
of the past studies (Jackson et al., 1982; Chauhan, 1997; O’Neill, 1996) have used the
horizontally polarized microwave brightness temperature for soil moisture estimation because of
Brewster angle effects in the vertically polarized data. To invert Equation 3, both the surface
RMS height s and optical depth τ are required. It is important to note that both of these
parameters appear in the exponential and consequently, they need to be known very accurately.
Small inaccuracies in their estimation will rapidly swamp the soil moisture estimation accuracy
(Chauhan, 1999a). Furthermore, these parameters are difficult to estimate, especially from a
space platform.

We have followed a two-polarization technique that can be applied for the estimation of soil
moisture from a space platform. The technique is an improvement over the existing single-
polarization technique, as neither the surface RMS height nor the optical depth is required in the
algorithm for the soil moisture estimation. The microwave frequencies from the space platform
can penetrate only weak vegetation, therefore, the microwave algorithm is limited to pixels
having NDVI less than or equal to 0.4. This condition will change if a lower microwave
frequency is available from the satellite. An examination of the expression of rough surface
reflectivity in Equation 4 reveals that the exponential part is polarization independent. Therefore,
a ratio of horizontal to vertical reflectivity is independent of surface RMS height, and as a result,
the surface roughness effects are eliminated through the ratio. Equation 3 is rewritten as:

)(2
2

2

vhe
TT
TT

R

R

Bv

Bh
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h
g ττ −

�
�
�

�
�
�

−
−=  (5)

In Equation 5, TBh, 
2h

gR , and TBv, 
2v

gR  are brightness temperatures and Fresnel reflectivities, for

horizontal and vertical polarization, respectively. At the microwave frequencies available for the
current spaceborne sensors, the horizontal and vertical optical depths for vegetation are close to
one another and more so for weak vegetation such as short agricultural crops and grasslands
(Chauhan, 1999a). As a result, 0≅− vh ττ . Since temperatures can be determined from the
satellite data, the ratio of the Fresnel reflectivities can be calculated from  Equation 5.

To obtain soil moisture from  Equation 5, the real part of the dielectric constant is expressed
using the analytical expression of horizontal ( h

gR ) and vertical ( v
gR ) Fresnel reflection

coefficients as:
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The dielectric constant obtained from above is converted to soil moisture using the relations
given by Hallekainen et al. (1985). In the present investigation, the equations above are used to
obtain coarse-resolution soil moisture from land surfaces.

Estimation of vegetation characteristics

If dual polarizations are not available on CMIS (a highly unlikely sceranio), then horizontally
polarized microwave brightness temperature can be inverted to obtain soil moisture. Equation 2
is invertable for vegetated surfaces (Chauhan, 1997; O’Neill et al., 1996), provided the estimates
of ω and τ are known for different vegetation covers. One approach is to classify vegetated areas
into 6 biomes (Myneni et al., 1997) and generate look-up tables for optical depth and single-
scattering albedo for the six biomes. Because LAI is the driving variable and will be available as
a VIIRS by-product parameter for the six biomes, both ω and τ can be calculated as a function of
LAI for different biomes. The discrete scatter model by Chauhan et al. (1994) can be used to
generate look-up tables. The accuracy of this treatment depends on ω and τ, and the model used
in the inversion process. As the sensor frequency goes higher or if LAI is high, Equation 2
becomes less accurate. Furthermore, this approach requires frequent refreshing of LAI estimates
throughout the year and they may or may not be available.

Alternatively, a simple operationally based treatment has been found to give reasonable soil
moisture results for vegetated areas using SMMR frequency = 6.6 GHz satellite data. It is
assumed for grassland and savanna types of vegetation that the single-scattering albedo is
negligibly small, so that Equation 3 can be used for soil moisture estimation. For SMMR data,
the transmissivity γ = τ−e has been found to be related to NDVI (Van de Griend and Owe, 1993)
such that:

NDVIe *6141.07049.0 −== −τγ (7)

Similar corrections for vegetation have also been proposed using a microwave Polarization Index
(Paloscia and Pampaloni, 1988) and its surrogate, such as a Microwave Polarization Difference
Index (MPDI). Note that the contribution of sky radiation to the microwave brightness
temperature BT  has been ignored here, and the vegetation is assumed to be short/sparse enough
so as not to contribute to a significant emission of its own, i.e., the scattering albedo is negligibly
small. Also, caution must be excerised because the empirical relations, such as those in Equation
11, have not been confirmed independently.

3.3.2.2 Soil Moisture at VIIRS Resolution

Soil moisture coupling to land-surface interactions has been used in the past to quantify soil
moisture signatures.  NDVI and soil temperature are proven indicators of the vegetative and
thermal state of the land surface. However, the vegetation and soil temperature have a
complicated dependence on soil moisture. Careful analyses of data by Carlson et al., (1994) and
Gillies et al., (1997) have shown that there can be a unique relationship among soil moisture,
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NDVI, and soil temperature for a particular region. The results were validated using data
analyzed from three experiments conducted at Mahantango, Kansas and in Costa Rica (Carlson
et al., 1994).  In addition, such relationships are also confirmed by theoretical studies using a
soil-vegetation-atmosphere-transfer (SVAT) model. A similar technique has also been used by
Nemani et al. (1993) to determine surface moisture status from satellite data.

Figure 4 represents a schematic description of the relationship, sometimes referred to as the
“universal triangle”. Here, soil moisture varies from right (low value) to left (high value) in the
triangle. The abscissa and the ordinate are scaled versions of temperature and NDVI respectively
such that:

os
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T
−
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=* (8)
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where T and NDVI are observed soil temperature and   NDVI respectively, and the subscripts o
and s stand for minimum and maximum values. Carlson et al. (1994) found that the relationship
between soil moisture M, NDVI*, and T*  can be expressed through a regression formula such as:
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In terms of regression coefficients ija , Equation (10) can be written as:
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Carlson (1998) claimed that a single polynomial such as the one above represents a wide range
of surface climate conditions and land surface types. The second or third order polynomial gives
a reasonable representation of the data.
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Figure 4. Universal Triangle – Schematic relationship between soil moisture,
temperature and NDVI

To apply Carlson’s “universal triangle”concept in the present context, the left-hand side in (11)
is replaced by microwave-derived soil moisture. In addition to NDVI and LST on the right-hand
side of Equation 11, surface albedo (A) is added to strengthen the relationship between soil
moisture and measurable land parameters. A correct combination of NDVI and A can be useful
in representing high-end soil moisture. Therefore, Equation 11 is modified to:
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3.3.3 Archived Algorithm Output

Volumetric soil moisture EDR at VIIRS pixel resolution, along with some flags indicating
quality of the retrieved parameter will be archived directly as a final product.
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3.4 ERROR ANALYSIS AND SENSITIVITY STUDIES

An error analysis of the soil moisture estimation procedure has been performed to calculate the
total error budget.  The total error is broken down into respective errors in the low-resolution
(microwave) and high-resolution (optical/IR) parts of the algorithm. Errors from each of these
parts have been further subdivided for error budget calculation. The following definitions of
accuracy, precision and uncertainty are given to understand different errors in the error budget
for the soil moisture estimation.

The measurement accuracy A is defined as;

|| TA −= µ (14)

where

�
=

=
N

i
iX

N 1

1µ (15)

and µ is the average of all the measured values iX  corresponds to a true value T. The precision
P, as defined in the SRD, is the standard deviation of the measurements from their average value
and is expressed as:
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Finally, the uncertainty is defined as:
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From the above definition, one can write

22 PAU += (18)

Thus, the uncertainty equals the RMS error between the measurements iX  and the true value T.
It is important to note here that precision and accuracy are quite different yardsticks for
characterizing data quality. Based on these definitions, the calibration errors can be lumped into
accuracy error.

3.4.1   Error in Soil Moisture Estimation at the Microwave Resolution

The error at the microwave resolution is composed of two separate errors. The first error is the
microwave algorithm error and is due to the inversion procedure employed to retrieve soil
moisture from the microwave data. The second error is contributed by the data accuracy and
precision.
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3.4.1.1 Microwave Inversion Error ( 1mE )

As described in Section 3.3.2.1, a radiative transfer model is used to invert dual-polarized
microwave brightness temperature.  To estimate error in this procedure, we have generated
microwave brightness temperature data for four different types of land surfaces using Peake’s
approach (Peake, 1959). The emission model is based on a discrete scatter model and has been
used extensively in the forward modeling of agricultural crops (Chauhan et al., 1994), Grassland
(Saatchi et al., 1994) and forest canopies (Chauhan et al., 1999b). A brief description of the
emission model is given in the Appendix. The four surfaces used in the modeling are; bare
smooth, bare low roughness (s=1 cm and l=10 cm), bare rough (s=3 cm and l=10 cm), and
vegetated (LAI=3). In above, s denotes the RMS surface height and l is the correlation length of
the surface. Bistatic scattering coefficients from the Kirchhoff’s rough surface model are used in
Peake’s approach to calculate microwave emissions from the rough surface. For vegetated
terrain, the canopy parameters from a typical soybean field are chosen for the modeling (Table
3). The leaf dimensions and density of the soybean canopy are equivalent to a canopy of LAI=3.
The forward model results at 6 GHz are inverted using the dual polarization technique described
earlier. Figure 5 shows the retrieved results for the four types of terrain. The RMS errors in the
soil moisture estimation are 14.9, 13.5, 3.2, 0.63 percent for vegetated, bare rough, bare low-
roughness and smooth bare terrains, respectively. The estimation has been carried out for the soil
moisture range of 0 - 100 percent. (Note that the typical field capacity for agricultural soil is ~ 35
percent).

Table 3. Soybean canopy parameters
Canopy Parameters

Canopy height 60 cm

Plant density 1000 /m**3

Leaf Parameters

Radius 4 cm

Thickness 0.2 mm

Density 1000 /m**3

Dielectric Constant 25.3 +j7.96

Inclination Angle Uniform

* These parameters are derived from actual measurements carried out
in a field experiment conducted at the Beltsville, MD USDA facility.
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Figure 5. Microwave soil moisture inversion results for four different land
surfaces. Dual polarization is used.

3.4.1.2  Error due to Data Accuracy and Precision ( 2mE )

Based on the current Sensor Requirement Document for VIIRS (NPOESS, 1999), the uncertainty
and precision requirement in LST are ± 2.5K and ~0.5K, respectively. Similar requirements for
CMIS are not known yet. Examining these parameters for SSM/I reveals its accuracy and
precision as ± 3K and 0.42K (Hollinger et al., 1990). This indicates that the optical/IR and
microwave sensors have approximately the same error in accuracy as it does in precision. The
uncertainty in LST arises because of the poor knowledge of surface emissivities. (Emissivities
are required to convert IR temperature to LST). For SSM/I sensor, the accuracy is poor as a
result of calibration problems; however, NEDT (noise equivalent temperature differential) is
small ~ 0.42K.

Microwave soil moisture is essentially derived from microwave emissivity, which is proportional
to the ratio of microwave brightness temperature to LST (see Equation 3).  Because of ratioing,
the effect of accuracy and precision in the microwave estimation of soil moisture is very much
reduced. To affirm this point, we have chosen a scene (25oN – 35oN, 40oE – 50oE) of February 9,
1991 in Middle East area, near Iraq for the analysis (Chauhan et al., 1998). The LST, NDVI and
surface albedo are calculated from AVHRR, Level 1B data that has a resolution of ~1 km. A
simple split window method (Price, 1984) employing data from Channel 4 and 5 of AVHRR is
used for this purpose. Similarly, surface albedo is calculated by scaling data from Channel 4 and
5 of AVHRR. The SSM/I data at 19.4 GHz is at 25 km resolution on cylindrical equal area
projection true at 30N and 30S. The microwave algorithm discussed in Section 3.3 is most
accurate for the weakly vegetated area. As a result, we have used an upper limit of NDVI ≤  0.4
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to limit the vegetated area. All pixels with NDVI>0.4 are discarded in the procedure for
microwave estimation of soil moisture. Based on the work of Myneni et al. (1997), NDVI of 0.4
translates to LAI ~1 for most biomes except forests where LAI could be ~2 (Figure 5a in Myneni
et al. [1997]). Because the Middle East area nearby Iraq has very little forested area, we infer
that the current scene is lightly vegetated with LAI ~1.

The microwave retrieval algorithm is applied to brightness temperature and LST (aggregated to
the microwave i.e., 25 km resolution), and soil moisture is computed. Then both temperatures are
corrupted by measurement errors (E) due to precision and/or accuracy. For the calculation of
errors for the microwave soil moisture, three cases of measurement error E are considered for the
present study; (a) E = ± 0.05K in LST only (from AVHRR) (b) E = ± 1K in microwave
brightness temperature only (from SSM/I), and (c) E = ± 3K both in LST and microwave
brightness temperature.   The SSM/I brightness temperature and/or LST are perturbed randomly
around their mean values by ± E.  These perturbed temperatures are then used in the microwave
estimation algorithm of the soil moisture. The root mean square errors in soil moisture estimates
for the above three cases are computed to be 0.063, 0.15 and 0.0045 percent, respectively. These
calculations suggest that the accuracy and precision of the two temperatures have relatively small
effect on the microwave estimation of the soil moisture.

3.4.2  Error in Soil Moisture Estimation at High Resolution

For soil moisture estimation at high resolution, there are again two different errors; first is the
regression error ( 1vE ), and the second is precision error due to NDVI, LST and albedo ( 2vE ). To
estimate both of these errors, we have performed further analysis on the Middle East scene of
February 9, 1991. A system of linear equations (Equation 9) is set up using SSM/I-derived soil
moisture, aggregated NDVI, albedo, and LST for the scene area. The system is solved, and
regression coefficients for the second order polynomial fit are determined. The regression
coefficients, and optical/IR parameters (NDVI, albedo, and LST) at 1 km are used in the right-
hand side of Equation 9 to obtain high-resolution (1 km) soil moisture values for the scene.  The
regression error is computed as the RMS error between the microwave soil moisture using a
regression coefficient and a previous direct estimate of soil moisture from the SSM/I data. For
this particular scene, the regression error ( 1vE ) is 1.6 percent. Analysis performed on other
scenes also gave the same order of regression error  (Chauhan et al., 1998). The relatively lower
value of regression error indicates that there are enough training data points in regression and the
regression coefficients are reasonable.
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Table 4. Error budget for the soil moisture estimation algorithm  (%)
Error Types 0 –35%

(< soil field capacity)
0 –100% Comment

Microwave Resolution:
Algorithm Error ( 1mE ):

Bare smooth
Vegetated (LAI=3)
Bare rough
Bare low rough

0.0005
3.6
3.7
0.5

0.63
14.9
13.5

3.2

Objective*
Extreme
Typical

Accuracy & Precision error ( 2mE ) < 1 < 1
High Resolution:
Regression Error ( 1vE  )
Precision Error ( 2vE ):

1.6 1.6

LST
NDVI
Albedo

0.338
1.57
0.722

0.338
1.57
0.722

For 0 – 100% soil moisture range
Error  budget 222222 722.57.1338.6.112.3 +++++=

< 5 %   for a typical bare rough surface
*For vegetated surface, the microwave algorithm is limited to weak vegetation i.e., NDVI ~ 0.4 or LAI ~1.
Therefore, microwave algorithm error Em1 would be much lower than 14.9%

To compute 2vE , we have flowed down precision error in LST, NDVI, and albedo to the high-
resolution soil moisture algorithm. We have assumed precision (P) in LST, albedo, NDVI as
0.5K, 0.020, 0.02, respectively. These precision values are taken directly from the Sensor
Requirement Document of VIIRS/NPOESS (NPOESS, 1999). One-by-one, the three inputs are
perturbed randomly around their mean value by ± P. The soil moisture resulting from perturbed
input to Equation 12 are compared to that obtained from the unperturbed inputs. The root mean
square error ( 2vE ) due to precision in LST, NDVI and albedo are computed to be 0.338, 1.57 and
0.722 percent, respectively.

An examination of Equation 12 reveals that the microwave-derived soil moisture M is related to
the scene variations in NDVI , albedo and LST and not to their absolute values. The parameters
NDVI*, A*, and T* in Equations 8, 9, and 13 define these relative variations. Therefore,
accuracy of NDVI, LST and albedo is likely to have little effect on the high-resolution soil
moisture estimation. Consequently, we have not calculated the effect of accuracy in LST, NDVI
and albedo on the soil moisture estimation procedure.

Assuming that different sources of error are uncorrelated, the total error budget for soil moisture

can be calculated as 2
2

2
1

2
2

2
1 vvmm EEEE +++ . Based on these error budget calculations, the
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maximum error to fulfill threshold requirement (typical bare surface) is less than 5 percent. For
vegetated surface (an objective requirement), the error is higher. This error is well within the
requirements set by NPOESS for the soil moisture estimation (NPOESS, 1999). Note that all but
the microwave algorithm errors are computed for the satellite data of Feb. 9, 1991 for the Middle
East scene. A summary of all the errors is given in Table 4.

3.4.3 Calibration Errors

VIIRS soil moisture EDR is not estimated directly from VIIRS sensor response. Rather it is
estimated from VIIRS products/radiances and CMIS brightness temperature. Currently, we are
insulated from CMIS system design activities, so CMIS instrument errors are not known to us.
The calibration error effects on NDVI, LST, and surface albedo are discussed in their respective
ATBDs.

3.4.4 Instrument Noise

The effects of VIIRS instrument noise on NDVI, LST, and surface albedo are discussed in their
respective ATBDs.

3.4.5 Others

The regression error can increase if the training area (where regression coefficients are derived)
and the test area (where regression is applied) are not the same. One such case can be the area
where the swath widths of VIIRS and CMIS do not overlap. Current SRD defines VIIRS and
CMIS swath-widths as 1,700 km and 3,000 km respectively. Later versions of this ATBD will
provide estimates of this error.

3.5 PRACTICAL CONSIDERATIONS

3.5.1 Numerical Computation Considerations

At this stage of the ATBD development process, we are adopting a modularization approach so
that the modules from one EDR can be shared with others. The algorithms are combined in a
pipeline so as to facilitate all the VIIRS EDR simulation processes. Existing computations for
soil moisture EDR are very fast, and computation time is not an issue for this EDR.

3.5.2 Programming and Procedural Considerations

All programming is in FORTRAN, and the images are produced using ERDAS image processing
software.

3.5.3 Configuration of Retrievals

In development.

3.5.4 Quality Assessment and Diagnostics

Soil moisture quality flags are being developed. The EDR values will be flagged if, for some
reason, the requirements given in [V-2] are not met. A typical example might be the case of soil
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moisture EDR beyond the swath width of 1700 km. Because the LST could be of lower quality
in swath widths greater than 1700 km, it could affect the soil moisture estimate. Soil moisture
estimates from difficult terrain such as mountains may also be flagged.

3.5.5 Exception Handling

At this stage of the ATBD development process, this issue is under consideration.

3.6 ALGORITHM VALIDATION AND DISCUSSION

There is a dearth of large scale soil moisture in situ data for the validation of retrieval results. In
addition, all in situ measurements are point measurements, and there are unresolved issues
concerning comparing point measurements with soil moisture maps. We have followed an
approach in which different components of the algorithm are tested/validated separately by using
a combination of simulated data from a well tested forward model as well as from satellite data.
The error budget discussed earlier revealed different types of errors. In this section, the algorithm
is applied to a mid-west region of the United States and the soil moisture estimates are compared
with in situ data. Parameters such as horizontal cell size, horizontal reporting interval, mapping
uncertainty, and minimum swath width are not discussed here as their verifications are the same
as those for NDVI or LST or albedo. Among the remaining parameters Vertical Cell Size is not
fixed for all soil types and for all soil moisture levels and Cell size verification is not relevant.
The soil moisture estimates are from the skin layer of the soil surface.,

3.6.1 Application to SGP-97 Data

Validation of soil moisture estimation results is difficult and even more so if satellite data is
involved. The difficulty lies not only in the estimation process but also in the measurements of
soil moisture. Several issues are involved in soil moisture measurements. Microwave sensors
measure soil moisture in the topmost soil layer (1/10 to 1/4 of a wavelength). At 19 GHz, this
layer can be about 0.1-0.4 cm deep. The penetration of the microwave signal depends on soil
moisture itself. In view of this, it is difficult to decide the depth of soil samples for in situ
measurements. Soil moisture changes very rapidly in the top layer. In addition, there are practical
problems in collecting soil samples at this depth. Also, spatial distribution of soil moisture
depends on soil parameters which are not distributed homogeneously in the area. As a result,
average soil moisture computed from point measurements in a footprint area may not be a
correct representation of the soil moisture in the footprint. In view of these uncertainities, a close
comparison of in situ point measurements from SGP-97 with the soil moisture predictions is not
attempted here. Rather the temporal and spatial comparisons with data are made here.

The algorithm is applied to data over a mid-west region (33oN to 38oN, -100oW to -96oW)
covering the SGP experiment conducted in June-July of 1997. The experiment was designed to
measure and estimate spatial and temporal variation in soil moisture and other hydrologic
variables. The bulk of this region is grassland along with short vegetation in the agricultural
fields. A major component of the experiment was to conduct a large number of point
measurements of 0-5 cm deep gravimetric soil moisture. These measurements were made at three
locations i.e., Little Washita (LW), El Reno (ER), and Central Facility (CF). The relative
locations of these sites are shown in Figure 6.
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Figure 6. Location of three sites for the in situ soil moisture
measurements at the SGP-97 experiment.
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At each of the locations, several fields were selected and within a field, several measurements of
soil moisture were made almost daily for about a month. Efforts were made to collect daily soil
moisture samples in the same general vicinity to facilitate temporal comparisons of soil moisture.
A specific pattern to walk in and out of the fields was followed  More details of the experiment
and data can be found at http://hydrolab.arsusda.gov/SGP-97.

Figure 7. An example of spatial variability in 0-5 cm soil moisture in a particular field at
Little Washita. The variability appears to be consistent for all the four days considered in
the present study.

For the present analysis, four days (June 29-30, July 1-2) during the SGP-97 experiment with
relatively clear sky conditions, were selected. Figure 7 shows the measured soil moisture
variability at LW on the four days.  It is noticed that there is a definite pattern in spatial
variability of soil moisture that repeats itself on all the four days. This variability could be the
result of changing soil properties of the area. Similar variability is also noticed in the soil
moisture data from other locations at ER and CF. The plots showing spatial variability  at ER and
CF are not given here.
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Figure 8. (a) An example of temporal and spatial variability in 0-5 cm soil moisture
measured at the SGP-97 area. Point measurements from each location such as LW are
averaged from the data collected from many fields in LW. LW and CF are located at south
and north edge of the SGP-97 experimental area.  (b) Retrieved surface soil moisture
averaged over three locations for June 29-30, July 1-2, 1999.  The averaging is done in a
5km x 5km area for a particular location. Note that pixels averaged in (a) and (b) are not
identical.

To determine if there is a temporal and spatial pattern/trend in soil moisture at these three
locations, the soil moisture measurements from all samples for a particular location on a given
day are averaged and the results are plotted in Figure 8a.  Note that the averaging of soil
moisture at a particular location is based on point measurements and the previous figure i.e.,
Figure 7, shows a typical variability in those measurements. Except for CF on June 29, soil
moisture decreases from June 29 to July 2. Notice also that soil moisture in the northern location
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(i.e., CF and ER) is higher than soil moisture in the southern location i.e., at LW.

In addition to soil moisture in situ  data, satellite data from AVHRR and SSM/I (frequency=19.4
GHz) were also acquired for the four days over the SGP-97 experiment region. This data has
been analyzed  (similar to the Middle East scene) for the estimation of soil moisture. The dual
polarization method is employed and the microwave algorithm is limited to weakly vegetated
pixels. All pixels with NDVI>0.4 are discarded for estimating soil moisture and the derivation of
the regression relations. To estimate soil moisture at 1 km resolution, a system of linear
equations are set up using SSM/I-derived soil moisture, aggregated NDVI, albedo, and LST. The
system is solved and the regression coefficients for the SGP-97 region are determined. The RMS
error between the regression-derived soil moisture and the SSM/I-derived soil moisture is small
(~ 0.01 for all days).  The soil moisture values at 1 km are obtained by substituting 1 km scale
NDVI, albedo, and LST on the right-hand side of (9). Soil moisture estimates are averaged over a
5 km x 5 km area for each of the LW, ER and CF locations. The 5 km x 5 km area could contain
roads and buildings and may not fully represent the sampled areas. Figure 8b shows a plot of
volumetric, high-resolution soil moisture predictions for the four days at the three sites. A
comparison of Figures 8(a) and 8(b) shows that the temporal trend in the predicted soil moisture
agrees with the generally decreasing soil moisture trend in the measurements. Also, the lower
soil moisture value at the southernmost location (LW) is in agreement with the measurements.
The predicted soil moisture is for skin layer only and therefore, comparison of its magnitude with
in situ  measurements is not warranted.

Comparison is also made between the low- and high-resolution soil moisture estimates for the
whole SGP-97 region. Volumetric soil moisture from all the pixels in the scene is plotted for the
four days. The high resolution soil moisture plot is shown in Figure 9. The soil moisture from the
SGP-97 experiment region exhibits a dry-to-moderate level of surface soil moisture.  The
volumetric soil moisture results at 25 km resolution are plotted in Figure 10. A comparison of
Figures 9 and 10 reveals one-to-one relationships between microwave-derived soil moisture and
1 km soil moisture. The two sets of plots also show that the mean value of soil moisture in the
two cases is about the same.
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Figure 9. High resolution soil moisture plot for the SGP-97 region for 4 days.
Soil moisture range varies from 5-20 percent.
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Figure 10. A plot of microwave (low-resolution) of soil moisture for the SGP-97 area. One-
to-one correspondence between Figs. 9 and 10 is observed.
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Figure 11. Soil moisture map of the SGP-97 area at 1 km resolution.  Decreasing trend in
soil moisture from June 29 to July 2 is broadly consistent with data.
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Figure 12. Soil moisture map of the SGP-97 area at 25 km resolution.
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To display the results presented in Figures 9 and 10 in terms of soil moisture image maps, the
soil moisture values at the low- and high-resolutions are color-coded and mapped to the SGP-97
area grid. The soil moisture images at the two resolution scales are shown in Figures 11 and 12.
The aim is to compare the spatial patterns in the soil moisture in the low- and high-resolution
images. A visual inspection of the two images shows that there is a close resemblance between
the soil moisture spatial patterns and the quantitative estimates. Clearly, the 1 km soil moisture
image shows much more detail than the 25 km soil moisture image. The patches of no data in the
northern part on June 29 are the result of the cloud mask that was applied to NDVI, LST, and
albedo. Clouds also effect brightness temperature, but the effect is less severe. We have used a
simple-minded cloud mask that involves masking cloud pixels based on the visible channel of
AVHRR. A new cloud mask for the NPOESS is being developed and will be incorporated in
later studies.  The eastern part of the SSM/I-derived soil moisture image on June 30, July 1-2 is
also shaded gray because SSM/I data was unavailable.

3.6.2. Discussion

The core of the process for high-resolution soil moisture determination involves a synergistic
analysis of microwave-optical/IR data. The algorithm combines the traditional accuracy of
microwave sensors for soil moisture sensing with the high-resolution capability of optical/IR
sensors to determine soil moisture estimates at high-resolution. An important component of the
retrieval process is the use of dual-polarization microwave data for obtaining surface reflectivity
which is later converted to soil moisture. The dual-polarization technique used here is a
departure from single polarization techniques that have been used for most of the previous soil
moisture estimation work. The dual polarization is suitable for global soil moisture estimation
from satellite data because it does not require a priori information about vegetation and surface
roughness condition. The NDVI is used to limit the application of the dual polarization algorithm
to the weakly vegetated pixels.

Vegetation has been assumed as an absorbing medium only and the scattering from vegetation is
ignored. Incoherent scattering from the rough surfaces is also not accounted for in the inversion
process. Most of the earlier studies involving soil moisture estimation from large-scale
experiments such as MACHYDRO-90, Washita-92, Washita-94, SGP-97, have made the same
assumption and found reasonable agreement with in situ soil moisture data. The proposed dual
polarization method for the microwave soil moisture is expected to be an improvement over the
previous techniques because incoherent scattering effects are minimized in the ratioing process.

We have performed a sensitivity analysis on the order of polynomial that is used in the
regression.  Equation 9 represents a second-order polynomial fit between the microwave-derived
soil moisture, NDVI, LST, and albedo. The second-order polynomial has seventeen terms in it.
We also experimented with higher-order polynomials. A higher-order polynomial is more
accurate but less flexible to interpolate soil moisture values outside the range for which the
regression coefficients are derived. On the other hand, a low-order polynomial may not be as
accurate, but it can interpolate soil moisture values over a wider soil moisture range.

The signals from SSM/I and AVHRR do not sense soil moisture to the same vertical depth. As a
result, their soil moisture estimates can differ. Microwave instruments measure soil moisture in
the topmost soil layer, and at 19 GHz, this layer can be less than half a centimeter deep. Strictly
speaking, the “universal triangle” method relates soil moisture availability (ratio of soil water
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content to field capacity) to radiant temperature and fractional vegetation cover (~NDVI*2). It is
possible that the estimates of soil moisture using the above two methods are different. But in the
approach outlined here, the ‘universal triangle’ method concept is used to establish relations
between soil moisture, temperature, albedo, and NDVI. As a result, the regression coefficients
could be different if the microwave-derived soil moisture or soil moisture availability is used in
Equation 9.  However, this will not effect the process of disaggregation that has been employed
to enhance spatial resolution of the soil moisture.

The regression error varies from scene to scene and could depend on the size of the scene. In
addition, if the training area (where regression coefficients are derived) and the test area (where
regression is applied) are the same, the regression error is small. For the NPOESS soil moisture,
we propose to determine separate regression coefficients for each contiguous scene in the orbit.
This will ensure reduced regression error. In cases, where the swath widths of VIIRS and CMIS
do not overlap, the regression coefficients from the adjacent scene will be used and as a result,
the error in soil moisture estimation will be higher.

The technique described here to link low-resolution soil moisture with the land parameters has its
theoretical basis in the surface energy balance technique. The “universal triangle” is the result of
numerous simulations carried out using the soil vegetation atmosphere transfer modeling. The
simulations have also been validated using data from different field experiments (Gillies et al.
1997). The SVAT simulations require micrometeorological and other data. Early simulations
were conducted using data collected at a field campaign in Mahantango, during the
MACHYDRO-90 experiment. In the remote sensing applications a regression relation like
Equation 8 gives results similar to those obtained by the SVAT model
(http://www.essc.psu.edu/~tnc).  Sensitivity tests have shown that the distribution of isopleths
inside the triangle is very insensitive to the initial conditions and so one can use a single
polynomial to represent a wide range of surface climate conditions and land surface types
(Carlson, 1998).

3.6.3 Risks and Risk Reduction Efforts

So far we have identified the four main risk areas. These areas and their potential effect are
identified below, along with our plans to mitigate the risks.

1. Soil moisture from vegetated areas. Soil moisture from vegetated areas is a research issue
and its estimation can affect measurement uncertainty. Soil moisture estimation uncertainty
will increase with increasing vegetation cover. As a mitigation plan, we will limit vegetation
up to an NDVI<0.4 in the microwave estimation algorithm.

2. Soil moisture from very rough surfaces. This also can result in an increase of measurement
uncertainty. There are three mitigation plans:

a) Use dual polarized rather than a single polarization technique for CMIS data inversion.

b) Determine whether a single roughness parameter (such as the h-parameter from
Choudhury, 1993) can be established from simulations that can be used for most of the
surfaces for a given viewing geometry (if single polarization method is to be used).

c) Search for a new technique involving a polarization index that can be applied on any type
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of surface roughness and that could be more robust for soil moisture retrievals from
heavily vegetated areas.

3) Soil moisture range. No work has been performed on soil moisture estimation beyond the
field capacity, and very little information exists on soil moisture beyond the field capacity.
As a result, we may not be able to validate soil moisture in the full range (0-100 cm/m).
Microwave does sense soil moisture in its full range 0-100 cm/m, but whether the regression
model is able to translate high-end (beyond field capacity) soil moisture at 1 km resolution
will have to be validated against in situ data. We plan to participate in some NASA/USDA
experiments to validate this issue.

4) Combining VIIRS and CMIS Synergistic data. Soil moisture estimates can be different from
the two sensors. CMIS and VIIRS do not sense soil moisture in the same vertical cell size. As
a result, their soil moisture estimates can differ. We will seek clarification from the
Integrated Program Office as to how it plans to benchmark soil moisture.
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4.0 ASSUMPTIONS AND LIMITATIONS

4.1 ASSUMPTIONS

In the VIIRS soil moisture retrieval algorithm, we assumed that the dependence of soil moisture
on parameters other than NDVI, LST, and surface albedo was weak and was ignored in the
regression analysis.

In calculating regression coefficients for a particular scene, we assumed that the scene area was
large enough to provide sufficient data points for regression, but too small to cause any
significant change in solar radiation flux across the scene.

It is assumed that the widely accepted empirical relationship between the dielectric constant and
volumetric soil moisture is valid up to 100 percent soil moisture. Based on current soil physics,
however, water added to soil beyond its field capacity is not retained by the soil. Field capacity
varies by soil type: from 4 percent (by mass) in sand, to 45 percent in heavy clay soils, and up to
100 percent in certain organic soils.

For the cloudy worst case, there is no way to derive soil moisture from VIIRS, which operates in
the visible/infrared bands. Therefore, the only source for soil moisture information is from
microwaves (i.e., CMIS). Based on the resolution of CMIS, 20 km or more can be the highest
achievable resolution. The soil moisture EDR for cloudy conditions under VIIRS has the same
requirements as that under CMIS. Therefore, for cloudy conditions, the VIIRS soil moisture
EDR will be same as the CMIS soil moisture EDR. Currently, we are not duplicating the CMIS
effort, but we have the capability to do so, and we will produce soil moisture under cloudy
conditions if needed.

4.2 LIMITATIONS

The algorithm is limited to bare soils and weakly vegetated areas. Its application to moderate and
heavily vegetated areas could yield inaccurate results.

The accuracy of VIIRS soil moisture algorithm will be degraded beyond a swath-width range of
1,700 km.

Microwave instruments measure soil moisture in the topmost soil layer (1/10th to 1/4th of a
wavelength). The optical/IR sensors may not be sensitive at the same depth. It is possible that the
microwave estimates of soil moisture may not be as strongly related to NDVI, LST and albedo as
its optical/IR equivalent.

Soil moisture is a defined quantity for land only. Land covered with snow, ice, or water will be
reported as 100 percent since the soil moisture will be reported for the skin layer. No soil
moisture will be reported for the frozen soils and forested areas. Soil moisture from difficult
terrain such as mountains will be flagged. Mountains usually have rocks, stones, and trees on
their surfaces. In addition, their large slopes affect the local viewing angle geometry. As a result,
soil moisture estimations are of questionable value and may not always satisfy accuracy
requirements given in the VIIRS SRD. Very little exists in the literature about soil moisture from
mountains.
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Remote sensing measurements of soil moisture beyond the field capacity of soil (i.e., when the
soil becomes saturated and cannot drain water) may not be reliable. Furthermore, remote sensing
measurements of soil moisture beyond the field capacity are not generally available in open
literature. Measurement range accuracy is limited in the range from 0 to soil field capacity. For
most soil surfaces, the field capacity is ~0.4. None of the existing techniques have been tested for
soil moisture range beyond the field capacity.

The soil moisture uncertainty range is limited to bare soils and low-vegetated areas. Large
vegetation, such as forest and orchards, are included.

The soil moisture EDR swath width is limited by the swath width of the LST EDR (1700 km).
Less accurate soil moisture will be produced beyond the 1,700 km swath because the LST
beyond the 1,700 km swath could be less accurate.
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APPENDIX

MICROWAVE EMISSION MODEL FOR LAND

Microwave radiometer response is obtained by summing up all the energy over the hemisphere
above the forest canopy. We have followed Peake’s approach (1959) which assumes thermal
equilibrium so that energy absorbed is equal to the energy emitted. The emitted energy or
emissivity is expressed as one minus the scattering albedo (Ulaby et al., 1982), and therefore, the
microwave brightness temperature Tq ( vhq ,∈ ) can be computed as

TWT qq )1( −= (A1)

where  T  is the physical temperature of the scene, qW  is the scattering albedo and is made up of

specular and diffused components i.e., qW = diff
qW + spec

qW , where diff
qW and spec

qW are diffused and

specular albedos respectively. These albedos are scene albedos and are different from the single
scattering albedo. A schematc representation of the model is given in Figure A1.

Figure A1. Schematic representation of the emission model for vegetated
terrain based on Peake's approach.
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The specular albedo for a vegetated rough surface is given as

spec
qW = *

iqsqΓΓ ioq skee θτ 222 cos42 −− (A2)

where iqΓ  and sqΓ  are the Fresnel reflection coefficients of the flat surface in the incident and the

scattered (specular) direction respectively. The asterisk (*) over iqΓ denotes its complex

conjugate. Earlier in Section 3.3 we used h
gR  and v

gR  to denote the reflection coefficients which

are a real part of iqΓ . The diffused albedo from a vegetated rough surface is contributed both by

the vegetation and the rough surface. It can be expressed as sum of the vegetation and rough
surface albedos. Mathematically, either one of the latter can be obtained by integrating the
scattering coefficients over the hemisphere above the scene as (Chauhan et al., 1994)

[ ]� Ω+= s
o
vq

o
hq

i

diff
q dW )()(

cos4
1 io,iο, σσ

θπ
(A3)

where  )( io,oσ  are bistatic scattering coefficients of the vegetation or the rough surface. These
are calculated using distorted Born approximation (Lang and Sidhu, 1983) and Kirchhoff’s rough
surface approach (Ulaby et al., 1982) for the vegetation and rough surface, respectively. The
integration is carried over the upper hemisphere where ssss ddd ϕθθsin=Ω .  Assuming that the
scattering from the rough surface and vegetation canopy are independent, Equation A1 can be
rewritten as

{ } TWWWT diff
vq

diff
sq

spec
qq )(1 ,, ++−= (A4)

where diff
sqW , and diff

vqW , denote diffused albedos from the surface and vegetation respectively.

More details about the emission model can be found in Chauhan et al. (1994).

The model shown above gives excellent results and has been validated by the author and
coworkers for a variety of land covers such as corn, grass and forest (Chauhan et al., 1994;
Saatchi et al., 1994; Chauhan et al., 1999b). The model is difficult to invert because of the
presence of diffused scattering terms from rough surface and vegetation. However, the model
can be simplified and thus invertible if the diffused albedo diffW ,  is assumed to be negligibly
small because of surface and vegetation,. This condition can be satisfied if the terrain is lightly
vegetated and/or has low surface roughness conditions. Therefore, Equation A1 is simplified as

qT =
2

1( q
gRT − )

222 cos42 ioq skee θτ −− (A5)

This equation is identical to Equation 3 shown earlier in Section 3.3. In the above equation
*2

iqsq
q
gR ΓΓ= . A detailed comparison of the Peake’s model with the simplified radiative transfer

model is discussed in Chauhan (1999a).

It is assumed in Equation A1 that the atmospheric and sky contributions to Tq are small and are
ignored here. Microwave brightness temperatures from space are modified by atmosphere. Short-
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term comparisons of TB are generally valid at low frequencies; however, over longer periods
(seasonal or yearly) it is necessary to take atmosphere into account. As noted by Choudhury
(1993), the magnitude of the effect of atmosphere at mid-latitudes at 19 GHz is of the order of
+3K. CMIS frequency used for the soil moisture retrieval process for NPOESS is likely to be
lower than 19 GHz. As a result, atmospheric contribution to brightness temperature will be small
and is not included here.

The forward model discussed above generates microwave brightness temperature for a particular
land surface. The threshold requirement is to estimate soil moisture from bare surfaces. For a
smooth bare surface, the horizontal and vertical microwave brightness temperatures are
calculated as a function of view angle and soil moisture (Equation A4). Microwave response
from a rough surface is generated by including both coherent and incoherent reflectives
(Equations A2 and A3). We have used Kirchhoff’s model to represent a rough surface having
RMS height=3 cm and correlation length=10 cm. Incoherent reflectivity is included using
Peake’s approach (Chauhan et al., 1994). The radiometer/model response for a smooth and rough
surface at a frequency of 6 GHz (a probable CMIS frequency) is shown in Figure A2. The results
of the forward model shown here are for volumetric soil moisture of 20 percent. The model
discussed here represents the state of the art, and their forward and inverse results have been
validated against a number of experimental data sets (Chauhan, 1997; O’Neill et al., 1996;
references therein). The data sets produced by the forward models are inverted using the method
discussed in Section 3.3.2.1, and the results are compared with the input/actual soil moisture for
both smooth, rough bare and weakly vegetated surfaces.

Figure A2. Forward model for smooth and rough (s=3 cm l=10cm)
surface without vegetation cover.
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Most of the past studies have used horizontal polarization data for the inversion of soil moisture.
This however requires a priori information  about the surface roughness and this information is
not available on a global basis. If  surface roughness correction is not applied to data then the
inversion results are not correct. This is shown in Figure A3, where the forward model is
inverted using both single polarization and dual polarization technique. As noticed from Figure
A3, the dual polarization results are much better than single polarization results. Note that for the
flat surface, the choice of polarization inversion technique is not important.

Data from operational sensors are often corrupted by noise; therefore, the forward model data set
needs to be corrupted with noise prior to inversion in order to mimic a realistic retrieval of soil
moisture. To test the present soil moisture estimation algorithm against such conditions, we have
corrupted the brightness temperature obtained from the model with varying degrees of random
noise. The results of the inversion are shown in Figure A4. The inversion process is robust and
gives results well within the acceptable noise level of microwave sensors. At present, we do not
know the noise level of CMIS; therefore exact evaluation of noisy data cannot be performed. For
SSM/I sensor NEDT is less than 0.5K.

Retrieval of soil moisture from surfaces other than bare soils, (e.g., vegetated surfaces) is an
“objective” requirement of NPOESS. In the case of soil moisture, this objective is an active area
of research. Therefore, retrieval of soil moisture from vegetated surfaces will evolve with time.
A brief summary of our plans and some preliminary results are given here. A look at Equation 1
reveals that two vegetation parameters, i.e., single-scattering albedo and optical depth, are
required for the vegetated surface. If some vegetation characteristics are known, then these two
parameters can be calculated using a discrete scatter model of a particular vegetation canopy
(Chauhan et al., 1994). Either LAI or NDVI information can be used to calculate vegetation
optical depth and/or scattering albedo. The approach is quite involved and will not be discussed
in the current version of the ATBD. Here, soil moisture retrievals using dual-polarization
inversion technique are used. For details including the sensitivity studies using this technique,
see Section 3.4. The results are discussed for a canopy of soybean that has an LAI of 3.

To summarize, the application of the retrieval algorithm to model data yields reasonably accurate
soil moisture results. The retrieval technique is robust enough to handle experimental noise and
weakly vegetated areas. The results from the forward model and the inverse problem were
validated earlier against experimental data for low (L-band) microwave frequency (Chauhan,
1997; Chauhan et al., 1994; O’Neill et al., 1996).
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Figure A3. Microwave estimates of soil moisture from bare (rough and flat) surfaces using
single polarization and dual-polarization inversion techniques.

Figure A4. Illustration of robustness of the soil moisture inversion against noisy data.
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